If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2-20x-12=0
a = 7; b = -20; c = -12;
Δ = b2-4ac
Δ = -202-4·7·(-12)
Δ = 736
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{736}=\sqrt{16*46}=\sqrt{16}*\sqrt{46}=4\sqrt{46}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-4\sqrt{46}}{2*7}=\frac{20-4\sqrt{46}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+4\sqrt{46}}{2*7}=\frac{20+4\sqrt{46}}{14} $
| 7/9y=63 | | X2+15x=100 | | 45+5x+x=180 | | 7+6(1-4c)=-21 | | 1/7x+5=15 | | 13=q-4 | | v4-3=5 | | 22=-7(3d+8) | | 8(1+3s)=31 | | 5y-4y=-33 | | 7/x-3=42/x+7 | | 3w+36=7w | | 2x-4x-10=8 | | 14-6w=w | | 10x+10€=0,40 | | 2/5x+5=13 | | 45-3x=18 | | x-14x+54=0 | | r×(7+1)=24 | | 5(4h+7)=21+6h | | 5p÷3=10 | | 8x+4-3=16 | | -7(4k-9)=19 | | 33=6x-7x=2 | | -3t^2-18t=0 | | 16e=176 | | 12-4k=40 | | -1/9(m+5)=6 | | 7d+19=75 | | -16=7+9(r-5) | | 4v+5v=-32 | | 66+30x=15x+15 |